
One-Dimensional Molecular Representations and Similarity Calculations:
Methodology and Validation

Steven L. Dixon* and Kenneth M. Merz, Jr.‡

Accelrys, Box 5350, Princeton, New Jersey 08543

Received March 29, 2001

Drug discovery research is increasingly dedicated to biological screening on a massive scale,
which seems to imply a basic rejection of many computer-assisted techniques originally designed
to add rationality to the early stages of discovery. While ever-faster and more clever 3D
methodologies continue to be developed and rejected as alternatives to indiscriminant screening,
simpler tools based on 2D structure have carved a stable niche in the high-throughput paradigm
of drug discovery. Their staying power is due in no small part to simplicity, ease of use, and
demonstrated ability to explain structure-activity data. This observation led us to wonder
whether an even simpler view of structure might offer an advantage over existing 2D and 3D
methods. Accordingly, we introduce 1D representations of chemical structure, which are
generated by collapsing a 3D molecular model or a 2D chemical graph onto a single coordinate
of atomic positions. Atoms along this coordinate are differentiated according to elemental type,
hybridization, and connectivity. By aligning 1D representations to match up identical atom
types, a measure of overall structural similarity is afforded. In extensive structure-activity
validation tests, 1D similarities consistently outperform both Daylight 2D fingerprints and
Cerius2 pharmacophore fingerprints, suggesting that this new, simple means of representing
and comparing structures may offer a significant advantage over existing tried-and-true
methods.

Introduction

Modern drug discovery, once frequently reliant on
computer-assisted methods of rational design, is in-
creasingly identified as a somewhat irrational conflu-
ence of genomics, combinatorial chemistry, and high-
throughput screening. Chemists and biologists have
responded to the challenges posed by this intersection
of disciplines, and experimental data are being ac-
cumulated at a rate that far exceeds the capacity of
many computational methods once touted as viable
means of accelerating the drug discovery process. For
computer-assisted approaches aimed at lead discovery,
emphasis has begun to shift somewhat away from areas
such as de novo design and more toward developing
ways to leverage huge internal warehouses of data. So-
called data mining methods are in increasing demand,
and the challenge is to unravel mysteries locked in
mountains of biological screening data, thus identifying
cost-effective alternatives to the pervasive practice of
screening every compound against every target.

In many respects, data mining is a repackaging of
tools and practices that have been around for years, and
there is little doubt that this ostensibly abstract field
still relies on the ability to search a chemical library
(real or virtual) for compounds that either resemble
known actives or satisfy some hypothesis derived there-
from. A primary issue of contention in this regard is the
appropriate representation of chemical structure. In-

teractions between a drug and its receptor are most
correctly modeled using three-dimensional (3D) infor-
mation, and there are any number of powerful 3D
searching techniques designed around this principle,
including pharmacophore matching,1-4 fast docking,5,6

and structural similarity calculations based on molec-
ular fields and surface properties.7-11 Despite the
growth and successes in these areas, simple 2D repre-
sentations of structure continue to be used routinely by
modelers and medicinal chemists alike. With the aid of
in-place database software, only minimal time and effort
is required to carry out a substructure search or to
perform similarity calculations using 2D fragment
descriptors.12 Moreover, the ability of these simple
approaches to explain structure-activity data is well
established.12-16 Thus in a climate where 3D method-
ologies are often viewed as holding the greatest promise,
Occam’s razor still governs many of the actual choices
that are made.

Working on this premise of simplicity, the question
arises as to whether a 1D view of chemical structure
offers any advantage over existing 2D and 3D methods.
More specifically, can a molecule be collapsed to one
dimension, and can this representation be used to
develop, for example, a superior measure of overall
similarity? SMILES17,18 strings and Sybyl Line Nota-
tion19 are well-known ways of encoding molecular
structure using 1D representations, but they are de-
signed for compact storage of information rather than
as tools for defining molecular similarity scales.

A more promising direction in which to proceed is
suggested by pioneering work in the field of amino acid
sequence alignment. Needleman and Wunsch20 provided
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a practical means of measuring similarity between
proteins based solely on the types and order of amino
acids that appear along their backbones. While proteins
are clearly 3D entities, the success of sequence-based
analyses indicates that a great deal of valuable infor-
mation can be encoded using simple 1D strings, and that
sequence homology (i.e., 1D similarity) is sufficient to
predict many complex behaviors that proteins share.

In translating the principles of protein sequence
homology to small molecules, it is natural to substitute
atoms for amino acids, but there is no clear counterpart
to the protein backbone and hence the correct sequence
of atoms. This issue is resolved through the use of
multidimensional scaling,21 which is a technique that
may be employed to map the atoms of a structure onto
a 1D coordinate such that the distances among atoms
are preserved in an optimal sense. A molecule is thus
represented by a set of atomic code strings (i.e., atom
types) and their corresponding positions along a single
coordinate axis. Molecular similarity is then obtained
by formally sliding one set of atomic strings past
another, until an alignment is found which provides
maximal overlap of matching atom types.

Some parallels may be drawn between our 1D meth-
odology and work carried out by Robinson and co-
workers,22,23 who use a nonlinear mapping technique
to generate 2D pixel-based images of 3D structures.
Digital image processing techniques are then used to
rapidly align pairs of 2D structures to achieve maximal
overlap of occupied pixels. Their method offers a sig-
nificant computational advantage over full 3D similarity
calculations, but continuous rotational freedom must
still be addressed. One-dimensional similarity as de-
fined here removes all rotational freedom, with the
exception of a possible 180° phase difference. Moreover,
atoms are differentiated according to type, so a rich
array of information is encoded in the 1D representa-
tions.

Design issues aside, the most important aspect of
developing any such methodology is the careful inves-
tigation of its potential to actually speed up the drug
discovery process. In doing so, a variety of intuitive and
relevant validation tests should be carried out, and a
sufficient number of data sets should be examined to
provide reasonable sampling of the classes of compounds
and biological targets that are of current therapeutic
interest. In the present paper, we examine numerous
data sets encompassing a wide range of targets, and we
consider several different approaches to validation.
Tests are designed to demonstrate both the relevance
of 1D representations and potential ways in which they
can be used as tools to accelerate drug discovery.

One-Dimensional Representations

Points in high-dimensional space can be mapped to
any lower number of dimensions through a technique
known as multidimensional scaling (MDS).21 There are
various tools that fall under the MDS blanket, but all
of them are designed to carry out this mapping while
preserving distances among the points in some optimal
fashion. In the present case, the points to be mapped
are the atoms in a molecule, and the “high” dimensional
representation could come from a 3D model, or it may
simply be a 2D graph, where no real geometric informa-

tion is supplied. At the outset we need only know the
distances dij between each pair of atoms i,j. This
distance corresponds either to the usual 3D Euclidean
definition or, in the case of the 2D graph, to the number
of bonds in the shortest path connecting atoms i and j.

Starting with some estimate xi
1D of each 1D atomic

coordinate, the corresponding 1D distances are defined:

The MDS procedure involves iterative adjustment of the
1D coordinates so that the distances dij

1D best ap-
proximate their 3D or 2D counterparts dij according to
some goodness-of-fit measure E1D. We use a simple sum-
of-squared errors approach, which is equivalent to
Kruskal’s Stress:24

A BFGS25 procedure is used to minimize the error,
which requires first derivatives of E1D with respect to
each 1D coordinate:

Second derivatives are estimated implicitly as the
minimization proceeds, and convergence to a minimum
is usually achieved in order(n) optimization cycles.

As noted previously, one must have some starting set
of 1D coordinates, and these are most readily obtained
by projecting the 3D or 2D structure onto a “primary”
axis of the molecule. We choose this axis to coincide with
the dominant eigenvector of an appropriate Gram
matrix G for the 3D or 2D structure. In the 3D case,
explicit atomic coordinates (xi, yi, zi) are known, and a
3 × 3 Gram matrix may be constructed:

Here, (x0, y0, z0) is the centroid of the 3D points, so that
x0, y0, and z0 are average coordinate values among the
n atoms along the corresponding Cartesian axes. This
approach is nothing more than a principal components
analysis (PCA) applied to three variables x, y, and z,
with the n atoms representing the data points. The
dominant eigenvector is thus the axis in 3D space along
which the data exhibit maximum variance, i.e., maxi-
mum sum-of-squared distances from the centroid. We
refer to it as a primary axis to distinguish it from the
principal axes that one obtains from the moment of
inertia tensor, which is a matrix that depends on both
the coordinates and the masses of the atoms.

dij
1D ) |xi

1D - xj
1D| ) x(xj

1D - xj
1D)2 (1)

E1D )

∑
i>j)1

n

(dij
1D - dij)

2

∑
i>j)1

n

dij
2

; n ) number of atoms

(2)

∂E1D

∂xk
1D

) [2/ ∑
i>j)1

n

dij
2][∑i)1

n (dik
1D - dik

dik
1D )(xk

1D - xi
1D)] (3)

G )

∑
i)1

n [(xi - x0)(xi - x0) (xi - x0)(yi - y0) (xi - x0)(zi - z0)
(yi - y0)(xi - x0) (yi - y0)(yi - y0) (yi - y0)(zi - z0)
(zi - z0)(xi - x0) (zi - z0)(yi - y0) (zi - z0)(zi - z0)

]
(4)

3796 Journal of Medicinal Chemistry, 2001, Vol. 44, No. 23 Dixon and Merz



When only a 2D graph of the molecule is available,
explicit 2D atomic coordinates are not provided and
there is no corresponding 2 × 2 Gram matrix. Instead,
a 2D f 1D embedding scheme borrowing ideas from the
field of distance geometry26,27 is used to construct an n
× n matrix whose dominant eigenvector ultimately
affords the projected 1D coordinates. This indirect
approach, which is summarized in an appendix, requires
only the 2D distances dij and not explicit 2D coordinates.
It is, in fact, a generalized method of determining
projected 1D coordinates, so that application of this
embedding scheme to a set of 3D distances yields the
same 1D coordinates that one would obtain from the
3D PCA approach above.

Once the primary axis and initial coordinates are
defined, the BFGS optimization procedure makes rela-
tively minor adjustments, typically decreasing the error
in the 1D distances by about 20%. Note that the entire
process is deterministic in nature, so a given 3D or 2D
structure will give rise to a unique 1D representation.

Figure 1 shows two simple structures and their
corresponding 1D representations generated by 3D f
1D projection onto the primary axis followed by BFGS
optimization. In this example, only non-hydrogen atoms
are treated and they are color-coded to distinguish
different elements, hybridization states, and degrees of
connectivity. When creating a database of 1D structures,
these features are conveniently encoded by way of
atomic character strings, for example, “C_3H2CH”
indicates a carbon (“C_”) with sp3 hybridization (“3”),
two attached hydrogens (“H2”) and membership in a
chain (“CH”), as opposed to a ring.

Molecule A contains 15 unique interatomic distances,
while molecule B contains 21. The sets of 1D distances
differ, in an RMS sense, from their target 3D distances
by 0.443 and 0.461 Å, respectively. Note that distances
are not reproduced well for atoms whose line of connec-
tion is orthogonal to the primary axis, for example, the
CdO bond in molecule A. This inherent weakness in
reduced dimensional representations becomes most
pronounced for star-shaped and/or spherically shaped

molecules, which are identified with excessive branching
in the structure and conformational effects that cause
the structure to fold back on itself. Robinson et al.22 have
addressed this issue in some detail, and they quantify
the effect with a spherosity coefficient.

While it must be conceded that, to varying degrees,
information is lost or distorted when a structure is
mapped to a 1D coordinate, this does not imply that 1D
representations are useful only for long, straight mol-
ecules. Frequently, the level of distortion provides
important information about the overall shape of a
molecule. For example, a “round” molecule (i.e., star-
shaped or spherically shaped) will typically yield a 1D
image wherein the atoms are densely distributed along
a coordinate that spans roughly the diameter of the
source structure. By contrast, a long, straight molecule
with the same number and types of atoms will give rise
to a far more extended 1D coordinate, so that the 1D
images are as vastly different as their original struc-
tures.

Of course making comparisons among round mol-
ecules may pose difficulties because the direction of the
primary axis can vary drastically from one molecule to
the next. Mathematically speaking, a round molecule
tends to yield a Gram matrix wherein two or more
eigenvalues are very nearly the same size, so the
eigenvector identified as the dominant one may change
with only a slight change in the structure. This ambigu-
ity can be resolved if the molecules being compared have
some common (nonround) core that can be used to define
a consistent Gram matrix whose dominant eigenvector
is essentially the same for all of the molecules. Fortu-
nately, most candidate molecules in the field of drug
discovery tend to be more elongated than round, so no
special treatment is required to assign the primary axis.
Obviously, a given data set can be analyzed for its
“roundness” to determine how faithfully the 1D repre-
sentations reflect the original structures, but that
information does not necessarily foretell how useful the
1D representations will be. Ultimately, extensive vali-
dation using biologically relevant data sets provides an
indication as to whether 1D representations can be
applied with success in the field of drug discovery.

One-Dimensional Similarity

In sequence alignment of proteins,20 dynamic pro-
gramming28 is used to pair up identical amino acid
residues, with interruptions in the chains, as necessary,
to increase the number of matches. For 1D similarity
of molecules, we use a related but somewhat different
approach to match up atoms of the same type. Figure 2
illustrates the situation for the same two molecules used
in Figure 1. Here, atoms are represented by rectangular
cells of unit area centered on their respective 1D
coordinate positions. The width of the cells indicates
how faithfully the 1D representations reflect the original
3D or 2D structures. Across broad classes of molecules,
we have observed that the RMS errors in 1D distances
are almost always less than 1.0 Å (3D) or one bond unit
(2D), so dcell is normally set equal to 1.0. To determine
the 1D similarity, molecule B is aligned at various
offsets with respect to molecule A, and the total overlap
area SAB between rectangular regions of the same type
is computed. The largest overlap area that can be

Figure 1. Three-dimensional structures and one-dimensional
representations for two simple molecules. Atoms are color
coded to differentiate elemental type, hybridization state, and
degree of connectivity.

1D Molecular Representations and Similarity Calculations Journal of Medicinal Chemistry, 2001, Vol. 44, No. 23 3797



achieved, SAB
max, is combined with normalization factors

from aligning each molecule with itself to define a 1D
similarity function on the interval [0,1]:

Finding the optimal alignment is of course at the heart
of the similarity calculation, and Figure 3 illustrates
how the overlap area changes as the 1D representations
of molecules A and B are allowed to slide past each other
in a continuous fashion. Because the objects being
overlapped are rectangles, the curve is simply a collec-
tion of line segments, with a change in slope occurring
each time two atoms of the same type begin to overlap,
reach a peak in their overlap, or cease to overlap. Red
boxes mark the instances wherein two atoms of the
same type reach their peak overlap, and it is only at
these points that the curve can exhibit a negative
change in slope. Since every local maximum on the
curve is followed immediately by a negative change in
slope, we are guaranteed that the global maximum will
occur when some pair of atoms of the same type is
perfectly aligned. Thus overlap areas need only be
computed at these alignment points in order to deter-
mine SAB

max. Because there could be a phase difference of
180° in the 1D coordinate systems, a second alignment

procedure is carried out with molecule B “flipped” by
180° relative to its original orientation. This requires
nothing more than algebraic negation of the 1D coor-
dinates, followed by realignment on the same pairs of
atoms.

For typical drug-like molecules containing 30-40 non-
hydrogen atoms, a single 1D similarity calculation as
described above requires 0.004-0.006 s of CPU time on
a modern Unix workstation (SGI Origin 2000, 270 MHz
R12000). It is possible to speed up the calculation by a
factor of 2 or more by employing a rapid preprocessing
step which automatically eliminates alignments that
give rise to comparatively small overlap areas.

As shown in Figure 4a, 1D representations for mol-
ecules A and B are positioned at a small number of
template-based offsets which are multiples of the cell
width parameter. Starting at a given template offset,
all matching atom types within half a cell width of each
other are identified, Figure 4b. Aligning A and B on all
of these pairs and doing full overlap calculations would
offer no time savings, so instead, partial overlap areas
are computed independently for each template cell of
B. These small-scale calculations focus on just the atoms
of a particular template cell, and they require mini-
overlap calculations at the extreme right and left
movements ((dcell/2) and at all intermediate positions
which align atoms of the same type. By considering all
of these alignments, a maximum partial overlap for each
template cell may be found. Because this process
involves independent movement of the individual tem-
plate cells rather than rigid movement of the entire
molecule, the sum of the maximum partial overlaps
defines a strict upper bound for the full A,B overlap.
This upper bound applies to all possible rigid alignments
of A and B that are within (dcell/2 of the associated
template offset. Molecule B is then shifted to the next
template offset, and the procedure is repeated.

After upper bounds for all necessary template offsets
are determined, the corresponding areas are sorted from
high to low, and full overlap calculations are initiated
in an order that follows the sorted upper bounds. Thus
starting at the template offset with the highest upper
bound, full overlap areas are computed for A and B, at
all atom-based alignments that require molecule B to
be shifted by no more than (dcell/2. During this process,
the largest full overlap encountered is always stored.
After these atom-based alignments are completed, the
template offset with the second highest upper bound is
considered, and so forth. At some point, the remaining
upper bounds will be lower than the largest full overlap
previously encountered. When this occurs, all subse-
quent template-based offsets and their associated atom-
based alignments may be safely ignored.

By eliminating unnecessary alignments, similarity
calculations on molecules containing 30-40 non-hydro-
gen atoms require only about 0.002-0.003 CPU seconds,
which represents a 2-fold reduction in the computation
time. For larger compounds (>40 non-hydrogen atoms),
the speedup is more pronounced, often greater than a
factor of 4. While this modest improvement may not be
fully appreciated for small data sets, it is certainly
noticeable when computing similarities across combi-
natorial libraries containing tens of thousands of com-

Figure 2. Calculation of the 1D overlap area between
molecules A and B (from Figure 1). Each atom is represented
by a rectangular region of unit area which is centered at the
assigned 1D coordinate for that atom. In this example, the two
molecules are aligned at their left-most atoms, and overlapping
areas of the same type are tallied, giving a total overlap of
slightly less than 4.0.

Figure 3. Variation of the 1D overlap area as molecules A
and B (from Figures 1 and 2) are allowed to slide past each
other in a continuous fashion. Red squares mark points where
two atoms of the same type come into alignment.

SimAB )
SAB

max

xSAA
maxSBB

max
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pounds, many of which are larger than 40 non-hydrogen
atoms.

Conformational Effects

When 1D similarities are derived from 3D structure,
there will of course be conformational effects and,
therefore, some level of noise introduced into the
problem. The degree to which 1D similarities can vary
depends on the flexibility of a molecule and the extent
to which this flexibility changes both the direction of
the primary axis and the distribution of atoms along
the axis. The mere fact that 1D similarities vary with

conformation does not necessarily constitute a defect in
the method, but it is important to know how much 3D
variation can be tolerated and whether a given similar-
ity value exceeds background noise.

Figure 5 illustrates how conformational changes affect
1D similarities for some molecules that appear in recent
J. Med. Chem. publications.29a-d The Catalyst program30

was used to generate 50 low-energy conformations for
each molecule, with ranges in energy up to 20 kcal. For
a given molecule, 1D similarities between all pairs of
conformers were computed, along with RMS differences
in their 3D coordinates. Each set of 1D similarities was

Figure 4. Template-based scheme used to eliminate unnecessary atom-based alignments. (a) A regular grid of template cells is
locked onto each 1D representation, and molecule B is positioned at a series of offsets (0, (dcell, (2‚dcell, ...) relative to molecule
A. (b) At a given template offset, all atoms of the same type separated by no more than dcell/2 are identified. (c) Starting at the
same template offset, partial overlap areas are computed for each template cell of B. These are calculated as the cell is positioned
at the extreme right and left limits of movement ((dcell/2) and at all intermediate positions which align matching atom types.
Yellow shaded regions indicate the range of movement of each template cell, and the pink-shaded regions identify the atoms of
molecule A which have the potential to contribute to the partial overlaps. The largest partial overlap areas found for the respective
template cells of B are summed to arrive at an upper bound on the total A,B overlap area. This upper bound applies to all atom-
based alignments that are within (dcell/2 of the current template offset.
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calculated using two different values of the cell width
parameter to demonstrate the effect of “smearing out”
atomic distributions along the 1D coordinate. Note that
this approach is for illustration purposes only, and it is
not intended to capture all of the information that would
be obtained from a full conformational analysis.

Not surprisingly, there is a general trend toward
lower 1D similarities as the 3D structures become
increasingly dissimilar in an RMS sense, but the rate
at which similarities drop depends on the overall size
of the structure. Larger, elongated molecules tend to
show a more gradual drop, and this is primarily because
1D similarities reflect the relative impact of conforma-
tional changes on overall structure. In other words, an
RMS deviation of 2.0 Å is not as significant a change

for a molecule that is 20 Å long as it is for a molecule
that is only 10 Å long. One might infer from this that
3D models for small molecules need to be generated
more carefully, but in going from the relatively large
molecule (Figure 5a) to the small molecule (Figure 5d),
there does not appear to be a consistent trend toward
lower 1D similarities among all conformations gener-
ated.

Comparing results for different values of dcell, it is
apparent that an increase in this parameter leads to a
shift toward higher 1D similarities, and this is simply
because wider cells exhibit nonzero overlap at greater
interatomic offsets. In effect, then, smearing out the
atoms decreases the sensitivity to conformational
changes. At the same time, however, a poorer signal-

Figure 5. Effects of conformation on 1D similarity. The Catalyst program was used to generate 50 conformations for each molecule,
and 1D similarities were calculated between all pairs of conformers, using two different values of the cell width parameter. Each
1D similarity is plotted against the corresponding RMS deviation in the atomic coordinates for that pair of conformers.
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to-noise ratio is created because 1D similarities are less
sensitive to genuine structural differences between
distinct compounds.

While we employ single conformer models throughout
the rest of this paper, there are alternative approaches
that directly address the conformational issue. For
example, one might generate a set of conformers for each
molecule, as above, then compute all pairs of similarities
between conformers from different molecules. An overall
1D similarity could then be defined as the maximum
similarity observed between any two conformers, or
perhaps as the average similarity observed by matching
up each conformer from one molecule with the most
similar conformer from the other molecule. Obviously,
this sort of approach could become unwieldy for ex-
tremely large collections of compounds, unless the
number of conformers generated is sufficiently small.

Validation Studies

Biological Activity. Throughout the course of the
validation tests, all activity data that was originally
reported on a concentration scale was converted to a
negative base 10 logarithmic scale, e.g., Ki f -log(Ki)
≡ pKi, where Ki is expressed in units of mol/L. Thus an
increase of one unit on the pKi activity scale corresponds
to a 10-fold reduction in the Ki value.

Molecular Descriptors. One-dimensional represen-
tations were generated for non-hydrogen atoms only,
starting with either 3D coordinates or 2D topological
distances. These two procedures are henceforth referred
to as 3D f 1D and 2D f 1D, respectively. Unless
otherwise noted (see steroids below), initial 3D coordi-
nates were obtained by using the default energy mini-
mization procedure in Catalyst. The cell width param-
eter was set to 1.0 for all 1D similarity calculations, and
intercompound distances were calculated as 1 - simi-
larity.

For comparison, parallel sets of validation tests were
run using both Daylight 2D fingerprints18 and 3D
pharmacophore fingerprints from the Cerius2 program.31

Two-dimensional fingerprints were generated using
standard Daylight protocol, i.e., paths of length 0-7
were considered in the initial fragmentation phase, and
fingerprints for a given data set were folded in half until
the average number of “on” bits was at least 30% of the
total bits. Three-dimensional pharmacophore finger-
prints were created using Catalyst conformational da-
tabases containing up to 100 conformers per molecule.
Pharmacophores were defined using the complete set
of Cerius2 features: negative charge, positive charge,
negative ionizable, positive ionizable, H-bond acceptor,
H-bond donor, aromatic ring, and hydrophobic group.
Feature distances were binned at a resolution of 2.0 Å
with a minimum separation of 1.0 Å. While Cerius2 has
the ability to generate fingerprints from either three-
point or four-point pharmacophores, we examined only
the three-point variety, primarily because four-point
fingerprints are far more expensive to calculate and
store and therefore do not provide a practical means of
searching potentially large chemical libraries. Tanimoto
coefficient (TC)32 was used as the similarity measure
for both the Daylight and Cerius2 fingerprints, and
intercompound distances were calculated as 1-TC.

Steroid Activity Correlation. Since the introduc-
tion of CoMFA,33 the steroid data set has become a
standard means of testing new methodologies, especially
those which incorporate 3D information. Conformational
freedom is very restricted in these molecules, so the
most troublesome distraction in 3D calculations is
largely removed. The lack of such complicating factors
should, however, temper enthusiasm derived from
obtaining a strong steroid QSAR, and it is probably wise
to limit the complexity of validation tests that involve
these compounds. Accordingly, we simply examine the
correlation between the measured affinity to cortico-
steroid binding globulin (CBG) and the similarity of each
compound to 11-deoxycortisol, the strongest binder.

Structures and activity data for the augmented set
of 31 steroids were obtained directly from the Gasteiger
Web site,34 and the supplied structures were submitted
to each descriptor generation protocol, as described
previously. No further modeling of the 3D coordinates
was done before generating 1D representations, but
Catalyst conformers were still generated for the 3D
pharmacophore fingerprints.

Figure 6 summarizes the similarity-activity correla-
tions for each method of measuring similarity, and it is
apparent that the 1D similarity scales are most strongly
related to activity. In both the 3D f 1D and 2D f 1D
cases, the correlation coefficient is at least 0.85, and this
compares quite well with results from high-level para-
metric models obtained by fitting to the CBG activity
data.33,35-38 Note that the strength of the correlation
weakens as the apparent complexity and/or dimension-
ality of the molecular representation increases: r(2D
f 1D) > r(3D f 1D) > r(2D fingerprints) > r(pharma-
cophore fingerprints). This ranking implies that more
advanced methods of comparing structures may offer
no significant advantage in the case of the steroids,
possibly because of their high rigidity and homology.

Figure 6. Correlation of similarity with binding affinity to
corticosteroid binding globulin (CBG). The similarity of each
compound to the tightest CBG binder (11-deoxycortisol) is
plotted against the compound’s own affinity to CBG.
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Neighborhood Behavior. The second set of valida-
tion tests employed Patterson’s “neighborhood behavior”
method,39 which was introduced as a means of evaluat-
ing molecular diversity descriptors. This approach is
based on the notion that a descriptor should not
measure two structures to be highly similar when there
is a large difference in their biological activity values
with respect to a given target. To determine whether
and to what degree a descriptor obeys this principle, the
absolute differences |∆actij| in biological activity are
plotted against the corresponding distances dij in de-
scriptor space for all unique pairs of compounds i,j in a
data set. Each distance is used to define a neighborhood,
which corresponds to a triangular region on the plot
with vertexes (0,0), (dij,0), (dij, max |∆actij|), where max
|∆actij| is the largest absolute activity difference ob-
served among all pairs of compounds. The neighborhood
containing the highest density of points (number of
points per area) is combined with the rectangular region
to the right of it, creating a lower right trapezoid (LRT)
which, for a valid descriptor, will contain a higher
density of points than the remaining upper left tri-
angular (ULT) region of the plot. Overall validity is
characterized by the ratio of the point density in the
LRT to the average point density across the full rec-
tangular region (LRT ∪ ULT). Maximum validity is
observed when all of the points lie in the lower right
triangular half of the plot, in which case the ratio is
2.0.

A ø2 value is computed to measure the statistical
significance of the buildup of point density in the LRT:

Here, NLRT is the number of points actually observed
in the LRT, and nLRT is the number that would be

expected if all of the points were distributed randomly
and uniformly across the entire rectangular region. This
random expectation value can be calculated from the
ratio of the LRT area to the total area:

where Ntot is the total number of points in the plot.
Table 1 summarizes results for 19 of the 20 data sets

analyzed by Patterson et al. Set 3 (Siddiqi) was omitted
because of the presence of mixed activity data.40 We
have included in Table 1 results reported by Patterson
et al. for Unity 2D fingerprints, which exhibited the
strongest neighborhood behavior of any whole-molecule
descriptor they analyzed. A side-chain-only version of
the Unity fingerprints did perform better, as did Cra-
mer’s topomeric descriptors,10 but these approaches
analyze only the portion of the molecule that varies, and
they are restricted to data sets where changes occur only
within a single R group. Such descriptors are not readily
amenable to comparisons between arbitrarily selected
structures and are therefore difficult to implement in
broad applications.

Before examining Table 1 in its entirety, we pause to
note that some caution should be exercised when
interpreting results from this validation technique.
Figure 7 contains neighborhood plots for data set
number 2 (Strupczewski), which is one of the two largest
collections tested by Patterson. The optimal neighbor-
hood line is drawn in each plot, and the corresponding
point density ratio and ø2 value are reported. Patterson’s
ideal plot would show a “fanning out” of points under
the ULT/LRT bisecting line, so that as one moves to the
right in the plot, there would be a distinct pattern of
progressively wider ranges in the biological activity
differences. From a visual inspection, none of the four

Table 1. Summary of Results from Neighborhood Validation Studiesa

3D f 1D 2D f 1D Daylight 2D FPs
Cerius2

pharmacophore FPs Unity 2D FPsc

data setb ncmpd
DLRT/
Dtot ø2 ød

2
DLRT/
Dtot ø2 ød

2
DLRT/
Dtot ø2 ød

2
DLRT/
Dtot ø2 ød

2
DLRT/
Dtot ø2

1. Uehling 9 1.59 7.80 0.421 1.70 9.59 0.317 1.83 12.50 0.296 1.89 14.22 0.023 1.55 6.22
2. Strupczewski 34 1.51 94.94 0.189 1.38 54.79 0.136 1.41 62.95 0.294 1.93 246.29 0.000 1.41 59.61
4. Garratt1 10 1.66 11.94 0.967 1.22 1.56 0.468 1.35 3.66 0.406 1.33 3.63 0.177 1.07 0.19
5. Garratt2 14 1.56 14.81 0.074 1.43 10.87 1.103 1.46 10.48 0.098 1.80 30.20 0.128 1.08 0.50
6. Heyl 11 1.08 0.26 0.000 1.02 0.01 0.001 1.52 7.74 0.002 1.50 9.20 0.064 1.01 0.00
7. Cristalli 32 1.37 45.80 2.107 1.31 31.07 1.476 1.48 69.99 1.145 1.74 147.46 0.130 1.31 30.27
8. Stevenson 5 1.40 0.80 0.000 1.33 0.73 0.003 1.19 0.24 0.039 1.93 4.47 0.106 1.07 0.04
9. Doherty 6 1.36 1.45 0.176 1.51 2.60 0.744 1.06 0.06 0.030 1.67 3.75 0.051 1.06 0.04

10. Penning 13 1.14 1.27 0.014 1.06 0.22 0.000 1.64 16.56 0.000 1.88 31.10 0.046 1.53 12.73
11. Lewis 7 1.44 2.67 0.241 1.40 2.18 0.197 1.32 1.59 0.070 1.51 3.50 0.043 1.01 0.00
12. Krystek 30 1.42 52.73 0.272 1.51 69.36 0.062 1.17 8.85 0.000 1.82 167.51 0.129 1.23 16.31
13. Yokoyama1 13 1.16 1.66 0.077 1.14 1.40 0.141 1.38 7.11 0.065 1.81 26.59 0.136 1.01 0.00
14. Yokoyama2 12 1.25 3.13 0.164 1.13 0.85 0.008 1.73 17.45 0.283 1.84 23.94 0.052 1.70 16.03
15. Svensson 13 1.27 3.76 0.000 1.18 1.94 0.000 1.24 2.86 0.165 1.62 14.77 0.000 1.02 0.02
16. Tsutsumi 13 1.17 1.81 0.164 1.06 0.29 0.002 1.40 7.02 0.026 1.90 32.89 0.462 1.58 14.35
17. Chang 34 1.47 80.38 0.430 1.43 65.65 0.116 0.99 0.06 0.001 1.62 128.77 0.040 1.13 8.36
18. Rosowsky 10 1.75 13.32 1.923 1.56 8.26 1.128 1.48 6.56 0.747 1.49 6.69 0.056 1.01 0.00
19. Thompson 8 1.39 2.63 0.024 1.24 1.14 0.054 1.07 0.12 0.160 1.68 6.84 0.130 1.17 0.68
20. Depreux 26 1.67 79.59 4.379 1.28 16.88 1.476 1.16 5.87 0.201 1.53 56.17 0.741 1.21 8.61

averages 1.40 22.14 0.612 1.31 14.70 0.391 1.36 12.72 0.212 1.71 49.89 0.132 1.22 9.16

a DLRT/Dtot ) (LRT point density)/(total point density); ø2 is the statistical test defined in ref 39; ød
2 is the corrected value defined in this

paper. b See ref 39 for complete citations and further details about the data sets. Set 3 (Siddiqi) was omitted because activity data was
of a mixed nature. c Results as reported in ref 39. ød

2 values were not computed because Unity fingerprint distances were not available.

ø2 )
(NLRT - nLRT)2

nLRT
(6)

nLRT )
ALRT

ALRT + AULT
Ntot (7)
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plots in Figure 7 displays a marked tendency to fan out
in this manner, yet the point density ratios and ø2

values indicate moderate to strong neighborhood be-
havior, with pharmacophore fingerprints yielding what
would appear to be staggeringly high validity. To
varying degrees, these validation results are clearly at
odds with common sense.

Pharmacophore fingerprints, which we believe to
produce the most misleading results, exhibit a narrow
range of unusually large distances, and this makes the
distribution of points intrinsically more likely to be
located in any LRT that can be defined by drawing a
line from the origin to some position at the top of the
plot. The exaggerated behavior associated with these
descriptors may not have been anticipated nor ob-
served by Patterson,39 but even the 1D representations
and 2D fingerprints receive undeservedly high validity
ratings that are directly attributable to statistical
properties of their distance distributions, irrespective
of any relationship to activity. While Patterson noted
that some spurious neighborhood enhancements could
occur, no indication was given as to what extent this
might be occurring in general. We have found that in
just about every case the density ratio and the ø2

statistic overestimate any genuine neighborhood en-
hancement and that certain descriptors with no neigh-
borhood validity can in fact be measured to have
extremely high validity.

One way to detect and correct for this phenomenon
is to employ an adjusted ø2 value which properly
accounts for the width and center of each distance
distribution. Rather than assuming a uniform distribu-
tion of points when computing nLRT (i.e., eq 7), one can
simply scramble the activity values among the data set
members, regenerate the |∆actij| vs dij plot, then count
the number of scrambled points that fall in the original
LRT.41 In this way, nLRT automatically accounts for the
statistical properties of the distance distribution, yield-
ing the correct null hypothesis for the ø2 test. For each
descriptor and data set, we have run this parallel
experiment 100 times to arrive at an average value for
nLRT, which can then be inserted into eq 6 to yield a
distribution corrected statistic, ød

2.
Referring again to Figure 7, we see that the ød

2

values tell quite a different tale from the other measures
of neighborhood validity. First of all, this statistical
measure is much smaller than its uncorrected analogue
ø2, indicating a more conservative (and realistic) esti-
mate of the significance of the LRT point densities. The
probabilities P that the ød

2 values could have occurred
by random chance are also much higher than those
associated with ø2. Note that pharmacophore finger-
prints are found to have absolutely no neighborhood
validity with respect to this data set, a conclusion that
is consistent with the narrow, right-skewed distribution
of points observed for this descriptor. Daylight finger-
prints exhibit the highest ød

2 significance, and the
corresponding plot does appear to show the most
pronounced fanning out of points, though the pattern
is not particularly strong.

To further support the conclusions implied by ød
2, we

also include in Figure 7 the correlation coefficient r
between the absolute activity differences and the de-
scriptor distances. Though this does not measure neigh-
borhood behavior in the same way, it does indicate
whether there is some relationship between |∆actij| and
dij. Note that the correlations are weak in every case,
but they follow the exact same order as ød

2, with
pharmacophore fingerprints even exhibiting a slightly
negative correlation.

For comparison purposes, neighborhood plots with
more ideal behavior are shown in Figure 8. Data set
number 7 (Cristalli) yields ød

2 values of greater than 1.0
for every descriptor except pharmacophore fingerprints.
As before, these corrected statistics are much smaller
than their ø2 counterparts, but they are among the
highest ød

2 values observed for the neighborhood data
sets. Correlation coefficients again follow the same order
as the ød

2 statistic, and the strengths of the correlations
are correspondingly higher than in Figure 7. From a
visual perspective, the neighborhood plots do reveal a
more pronounced fanning out of the points, which is
perhaps more evident upon direct comparison to the
almost Gaussian-shaped patterns of Figure 7.

Armed with a more robust measure of neighborhood
validity, we now return to Table 1 and examine the
entire collection of 19 data sets. According to the density
ratios and ø2 values, pharmacophore fingerprints show,

Figure 7. Neighborhood behavior plots for data set 2
(Strupczewski). Patterson’s original validity measures DLRT/
Dtot and ø2 indicate that all four sets of descriptors have
moderate to strong neighborhood behavior. However, the dis-
tribution-corrected statistic ød

2 implies much weaker neigh-
borhood behavior, and the validity rankings based on this
measure follow the same order as the correlation r between
absolute activity differences and descriptor space distances.
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on average, the strongest neighborhood behavior. How-
ever, as observed in previous examples, the corrected
statistic ød

2 indicates that these descriptors are the
least valid. If we discount pharmacophore fingerprints,
we see that the 3D f 1D distances yield the most
pronounced neighborhood behavior by all measures, and
2D f 1D distances rank second according to both ø2 and
ød

2. Daylight fingerprints appear to be more valid than
Unity fingerprints, but it is difficult to say with certainty
since we were unable to determine the ød

2 statistic for
the latter.

Aside from the reversal of the pharmacophore fin-
gerprint validity, the overall conclusions based on ød

2

generally agree with those derived from Patterson’s
original measures. Note, however, that the individual
performances generally do not indicate high levels of
statistical significance; only the 3D f 1D method
applied to data set 20 produced a ød

2 value greater than
3.84, which corresponds to the 95% confidence level.
Nevertheless, it must be remembered that even a
moderate level of statistical significance still implies an
advantage over random screening, where the discovery
stage hit rate is often 1/10000 or lower.

k-Nearest Neighbors Activity Prediction. k-Near-
est neighbors42 (kNN) is a pattern recognition technique

wherein a prediction is made for an unknown object
based on information from the k objects in a training
set that are most similar to the unknown. In QSAR-
related applications, kNN frequently involves predicting
the class or category into which a compound is most
likely to fall, for example, active versus inactive. For
purposes of descriptor validation, however, this binary
division can be too subjective, and we prefer to use a
kNN design that involves a continuous activity scale.
In this case, the most straightforward approach is to
predict the activity of each compound to be the average
activity observed for its k nearest neighbors. Zheng and
Tropsha43 have used this technique to select variables
for QSAR analysis, and we adopt it here as a means of
descriptor validation.

An optimal value of k is determined for each data set/
descriptor combination based on jack-knifed activity
predictions. In the present set of tests, the value of k
which yields the highest correlation r between predicted
and observed activities is selected. One could just as well
use the RMS error in the predictions, or the coefficient
of determination R2, but these measures can penalize
predictions which accurately reflect the rank ordering
of activities, unless the predicted activity range corre-
sponds to the observed range. Using a mean approxima-
tion necessarily contracts the range of predicted activity
values, so RMS and R2 are less suitable than the simple
correlation r. Note that while Zheng and Tropsha43

restrict the optimum value of k to lie between 1 and 5,
we place no such limits on k in order to avoid introduc-
ing any possible external bias into the validation
process. Allowing k to become larger than five generally
did not lead to any significant improvements in correla-
tion coefficients, but at the same time, no method was
penalized for requiring larger values of k in order to
arrive at optimal predictions.

Table 2 summarizes the 10 data sets used in the kNN
validation studies. The first five sets were chosen from
among recent issues of J. Med. Chem., with the follow-
ing criteria: (1) multiple activity determinations with
high precision (<15% variation on average); (2) at least
3 orders of magnitude range in the activity values; and
(3) a large number of compounds by J. Med. Chem.
standards. The remaining compounds in Table 2 cor-
respond to the five largest data sets analyzed in the
neighborhood validation studies. There is some similar-
ity between the endothelin antagonists of sets 5 and 8,
but the former collection is much larger and consider-
ably more diverse structurally. Altogether, the 10 data
sets provide reasonably broad coverage of both com-
pound and target space, with data derived from a
variety of experiments, including radioactive binding
assays, in vivo measurement of antipsychotic behavior,
and cytotoxicity to cancer cells.

Table 3 summarizes the kNN validation results.
There is a fairly general consensus among the various
descriptors as to which data sets are easiest to model
and which are most difficult. Not surprisingly, the
performance for set 6 (Strupczewski) was poor across
the board, and this result was also seen in the neighbor-
hood validation studies when the ød

2 statistic was ex-
amined. The underlying SAR for this in vivo data
appears to be very elusive indeed. For most data sets,
the observed correlation coefficients are not particularly

Figure 8. Neighborhood behavior plots for data set 7 (Cris-
talli). The ød

2 statistic, while still much smaller than ø2,
indicates significantly stronger neighborhood behavior than
observed previously for data set 2. Correlation coefficients r
once again rank validity in the same order as ød

2, and their
values are also higher than observed for data set 2.
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high, so this technique cannot be relied upon to produce
a strong QSAR consistently. Nevertheless, it does allow
a determination of the general active/inactive discrimi-
nating abilities of each similarity measure. On the basis
of the average correlation coefficients, the overall rank-
ings for kNN validity are 3D f 1D > 2D f 1D >
pharmacophore fingerprints > 2D fingerprints. Once
again we see that 1D similarities perform quite well
compared to similarities based on explicit 2D and 3D
molecular representations.

Prediction of Target Class. The final set of valida-
tion tests were aimed at determining each descriptor’s
ability to distinguish ligands according to their pur-
ported biological targets. This is in stark contrast to
previous tests, which focused on fine scales of similarity
and activity within congeneric series of compounds.
Validation on a more coarse scale addresses issues
related to chemical library searching; specifically, given
one or more compounds known to be active against a
particular target, is it possible to identify new actives
in a diverse library, without extracting an undue
number of false positives? Having access to a descriptor
that recognizes critical structural differences between

ligands of different targets is clearly an advantage in
this situation, because compounds which could not
possibly bind to the target of interest will tend to be
disregarded.

When presented with a collection of ligands and their
corresponding targets, the ideal descriptor would of
course separate the ligand classes into distinct clusters,
but, unfortunately, this sort of behavior is rarely
observed. A less demanding requirement is that the
population of compounds within a certain similarity
radius of a given ligand be statistically enriched with
ligands of that same class. In this way, a typical library
search that is focused around known actives will identify
additional actives at a rate that is enhanced compared
to random selection.

Figure 9 illustrates how this idea is used to design a
validation experiment. Here, object x is compared to a
training set of objects that fall into three different
categories. Within this collection, the overall class
populations Nbulk determine random probabilities Pbulk
for membership in each of the three classes. The
analogous quantities Nsim and Psim are derived from only
those training set objects which lie within the indicated

Table 2. Summary of Data Sets Used in kNN Validation Studies

data seta ncmpd compound class activity profile

1. Huang 37 â-carbolines GABAA R1 receptor affinity
2. Vacher 68 6-substituted-2-pyridinylmethylamines serotonin 5-HT1A antagonism
3. Gamage 41 bis(acridine-4-carboxamides) topoisomerase I/II inhibition
4. Deutsch 40 2-(aminoethyl)-3-phenylbicyclo alkanes dopamine transport complex affinity
5. Murugesan 73 biarylsulfonamides endothelin ETA antagonism
6. Strupczewski 34 3-[[(aryloxy)alkyl]piperidinyl]-1,2-benzisoxazoles in vivo antipsychotic D2/5-HT2 antagonism
7. Cristalli 32 adenosines adenosine A2a receptor affinity
8. Krystek 30 arylsulfonamides endothelin ETA antagonism
9. Chang 34 1,2,4-triazolinone biphenylsulfonamides angiotensin II AT1 receptor affinity

10. Depreux 26 N-naphthylethyl amides melatonin receptor affinity
a References and notations for data sets: 1. Huang, Q.; He, X.; Ma, C.; Liu, R.; Yu, S.; Dayer, C. A.; Wenger, G. R. J. Med. Chem. 2000,

43, 71-95. Compounds from Table 6, excluding 70 and 73 due to identical structures but different affinities, and excluding 96-98, 102,
104, 105 due to specification of only a bound on Ki. Activity ) pKi for R1 affinity. 2. Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek,
W.; Assié, M.; Cosi, C. J. Med. Chem. 1998, 41, 5070-5083. Compounds from Tables 2-5, excluding duplicate entries, 8-OH-DPAT, and
excluding 21 and 75 due to bounded Ki. Activity ) pKi for 5-HT1A. 3. Gamage, S. A.; Spicer, J. A.; Atwell, G. J.; Finlay, G. J.; Baguley,
B. C.; Denny, W. A. J. Med. Chem. 1999, 42, 2383-2393. Compounds from Table 1, excluding 9a, amsacrine, and doxorubicin. Activity
) pIC50 for Murine Lewis Lung carcinoma (LL). 4. Deutsch, H. M.; Collard, D. M.; Zhang, L.; Burnham, K. S.; Deshpande, A. K.; Holtzman,
S. G.; Schweri, M. M. J. Med. Chem. 1999, 42, 882-895. Compounds from Table 1, excluding (-)-cocaine and WIN 35,428. Activity )
pIC50 for inhibition of [3H]WIN 35,428 binding. 5. Murugesan, N.; et al. J. Med. Chem. 1998, 41, 5198-5218. Compounds from Tables
2-6, excluding duplicate entries, BQ-123, BMS 182874, and excluding 40a due to bounded Ki. Activity ) pKi for ETA. 6. Strupczewski,
J. T.; et al. J. Med. Chem. 1995, 38, 1119-1131. Compounds from Tables 2 and 3 with R1 ) 6-F, n ) 3, X ) O, and excluding 56 and 57
due to unspecified chirality. Activity ) pED50 for inhibition of apomorphine-induced climbing (ED50 converted from mg/kg to mol/kg). 7.
Cristalli, G.; et al. J. Med. Chem. 1995, 38, 1462-1472. Compounds from Table 1, excluding CGS 21680, NECA, CCPA, and compound
20. Activity ) pKi for binding to rat striatum A2a. 8. Krystek, S. R.; Hunt, J. T.; Stein, P. D.; Stouch, T. R. J. Med. Chem. 1995, 38,
659-668. Compounds from Table 1, excluding 16, 17, and 33-36. Activity ) pIC50 for ETA. 9. Chang, L. L.; et al. J. Med. Chem. 1994,
37, 4464-4478. Compounds from Table 1 with R3 ) (2-Cl)C6H4. Activity ) pIC50 for AT1 (rabbit aorta). 10. Depreux, P.; et al. J. Med.
Chem. 1994, 37, 3231-3239. Compounds from Table 1 with R1 ) 7-OCH3, R2 ) H, x)1, R3 ) H. Activity ) pKD.

Table 3. Summary of Results from KNN Validation Studies

3D f 1D 2D f 1D Daylight 2D FPs
Cerius2

pharmacophore FPs

data set ncmpd k r k r k r k r

1. Huang 37 5 0.3489 5 0.4175 9 0.4920 2 0.5002
2. Vacher 68 3 0.5585 3 0.4819 13 0.4238 3 0.4134
3. Gamage 41 4 0.5957 1 0.5935 2 0.4464 3 0.5125
4. Deutsch 40 14 0.8778 1 0.7679 10 0.8025 2 0.7838
5. Murugesan 73 5 0.6286 2 0.5781 6 0.4376 2 0.5101
6. Strupczewski 34 7 0.1543 0a 0.0000 11 0.1490 12 0.1885
7. Cristalli 32 20 0.5376 19 0.5250 8 0.6629 10 0.4363
8. Krystek 30 1 0.7152 12 0.5868 1 0.1951 8 0.5298
9. Chang 34 12 0.5338 2 0.4366 5 0.4968 2 0.3480

10. Depreux 26 12 0.8584 1 0.8435 1 0.6529 3 0.7737

averages: 0.5809 0.5231 0.4759 0.4996
a No value of k performed better than predicting the activity to be the same for all compounds.
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similarity radius of x. On the basis of the ratios Psim/
Pbulk, we see that class 2 is statistically enriched within
the similarity radius, and thus object x would be
predicted to be in class 2. Note that predictions are not
simply based on which class appears most frequently
within the similarity radius; rather, they are deter-
mined by the class that exhibits the greatest relative
increase in probability inside the similarity radius. For
validation purposes, the true class of x would be known
beforehand, so the accuracy of this and other predictions
assesses the ability of the descriptor to distinguish
compounds in a way that facilitates chemical library
searching.

Validation tests proceed much as they did in the kNN
studies, with each compound in a collection being held
out for prediction, using the remaining compounds as
a training set. The process is repeated using different
values of the similarity radius, until an optimal radius
is found which yields the best overall jack-knifed clas-
sifications. The quality of the predictions can be meas-
ured in various ways, perhaps the most obvious being
the total number of correct classifications. However, this
tends to bias predictions toward classes that are most
heavily represented in the training set, potentially
leading to poor predictions for compounds that fall into
less populous classes. To alleviate this problem, predic-
tion quality Qp is defined as follows:

Here, the number of correct jack-knifed predictions for
each class i is normalized with respect to the number
of compounds Nbulk(i) contained within that class. Qp

has a maximum value of 1.0 and indicates, on average,
the fraction of compounds within each class that are
classified correctly. The similarity radius giving rise to
the largest value of Qp is judged to be optimal.

A data set was assembled by searching the Compre-
hensive Medicinal Chemistry database (CMC-3D44) for
various categories of ligands defined according to bio-
logical target. Compounds were considered for inclusion
if the target was clearly identified in the “class” field of
the database, and there was no cross-reactivity indi-
cated toward another distinct target. Table 4 sum-
marizes the composition of the data set that was
retained for classification studies. Where possible, class
definitions were made at receptor subtype levels, i.e.,
R- and â-adrenergics and H2 antihistamines. It was not
practical to subdivide dopaminergics and serotonergics
because only a handful of compounds in the database
are reported to have high selectivity for any one subtype.
Certain families of targets were avoided, for example,
steroidal receptors, because the ligands tend to be so
homologous that classification is trivial. Cholinergics
were also not considered because their population in the
CMC database is almost as large as the combined
populations in Table 4.

Table 5 contains average Daylight 2D similarities
between pairs of ligands within each class and from one
class to the next. In most cases, ligands that bind to a
given target are not significantly more similar to each
other than they are to ligands that bind to other targets.
This suggests that the individual families of ligands
probably do not form distinct clusters, but again, this
is not assumed to be necessary for the present set of
validation tests. It is worth noting that the intraclass
similarities here are generally much lower than those
of the previous congeneric series of compounds. Average
Daylight 2D similarities within the data sets of Tables
1 and 2 are typically greater than 0.7, and some are as
high as 0.9.

Results of the jack-knifed classifications are provided
in Table 6. ACE inhibitors, â-adrenergics, and H2
antihistamines appear to be classified reasonably well
regardless of how similarity is computed. Problems
arise, however, for the other ligand classes, especially
serotonergics, which are misclassified by 2D fingerprints

Figure 9. Classification of an object x by sampling within a
similarity radius. For a training set of objects that fall into
three different categories, the overall class populations Nbulk

determine random probabilities Pbulk for membership in each
class. Nsim and Psim are based on only those training set objects
which lie within the similarity radius of x. The ratios Psim/
Pbulk indicate that class 2 is statistically enriched within the
similarity radius, and thus object x would be predicted to be
in class 2.

Qp )
1

nclass
∑
i)1

nclass Ncorrect(i)

Nbulk(i)
(8)

Table 4. Summary of CMCa Compounds Used in Classification
Studies

class number

ACE inhibitors 30
R adrenergics 23
â adrenergics 66
dopaminergics 39
H2 antihistamines 24
serotonergics 37

a Comprehensive Medicinal Chemistry Database: ISIS CMC-
3D version 1999.1.

Table 5. Average Intraclass and Interclass Tanimoto
Similarities Based on Daylight Fingerprints

ACE R â dopa. H2 serot.

ACE 0.5721 0.4029 0.3736 0.4052 0.3472 0.4022
R 0.4029 0.3867 0.3571 0.3882 0.3467 0.3808
â 0.3736 0.3571 0.4980 0.3627 0.3240 0.3508
dopa. 0.4052 0.3882 0.3627 0.4127 0.3541 0.4000
H2 0.3472 0.3467 0.3240 0.3541 0.4097 0.3506
serot. 0.4022 0.3808 0.3508 0.4000 0.3506 0.3969
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more than three-fourths of the time, and about two-
thirds of the time when pharmacophore fingerprints are
used. We note that the misclassified serotonergics were
most often predicted to be dopaminergics, which is not
surprising considering the cross-reactivity so frequently
observed between 5-HT and D2/D4 receptor ligands. The
CMC database did not indicate any cross-reactivity for
these compounds, but there is obviously a general
tendency for high similarity between ligands of these
two receptor families. In contrast to the 2D and 3D
fingerprints, both sets of 1D descriptors correctly clas-
sify the majority of the serotonergics, as well as every
other family of ligands, yielding identical results for the
total number of correct classifications. The 2D f 1D
scheme receives a higher prediction quality, however,
because it performs significantly better for the com-
paratively small collection of R-adrenergics. On the basis
of the Qp measure, the overall validity rankings are as
follows: 2D f 1D > 3D f 1D > pharmacophore
fingerprints > 2D fingerprints.

Conclusions

A 3D or 2D structure can be collapsed onto a 1D
coordinate to create a novel and useful way of depicting
molecules. With atoms differentiated according to type,
these 1D representations of structure may be rapidly
aligned, much like protein sequences, to provide a
measure of overall similarity between molecules. Simi-
larity calculations can be done at a rate of several
hundred per second, so queries within real combinato-
rial libraries generally require only minutes. With
trivial parallelization, this can be sped up to any desired
degree.

Extensive validation tests show that 1D representa-
tions, whether derived from 3D models or chemical
graphs, perform better than 2D hashed fingerprints and
3D pharmacophore fingerprints in a wide variety of
situations. This somewhat surprising result suggests
that an exceedingly simple model of chemical structure
may offer one of the best means of searching chemical
libraries and analyzing structure-activity data.
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Appendix: 2D f 1D Embedding Scheme
When 1D representations are derived from a chemical

graph, each 2D distance dij is simply the number of
bonds along the shortest path connecting atoms i and
j. Explicit 2D coordinates are not available and, more-
over, because the 2D distances are not Euclidean, there
frequently is no realizable structure that exhibits true
point-to-point interatomic distances that are identical
to the path lengths from the chemical graph. Despite
these difficulties, it is possible to define a primary axis
and obtain an initial 1D projection by borrowing some
concepts from the field of distance geometry.26,27 While
the equations and formulas presented here are grounded
in Euclidean geometry, they can still be applied formally
to the non-Euclidean case to arrive at a high-quality 1D
estimate.

One critical piece of the puzzle involves definition of
a centroid using only the distances among the atoms.
In the absence of explicit atomic coordinates, one cannot
directly determine the location of the centroid itself but
it is possible to calculate the distance between each atom
and the centroid:26

When the distances dij are not Euclidean, as in the
2D f 1D case, there may be instances wherein a few of
the d0i

2 values are actually negative. This nonphysical
situation occurs only for atoms very close to the centroid,
so the negative terms are quite small in absolute value.
Despite the apparent mathematical paradox, no special
treatment is required in these cases and the estimated
1D coordinates that are ultimately obtained are still
quite reasonable.

Again, while specific atom locations are not known,
one can define, for operational purposes, the set of
vectors {p01, ..., p0n} which connect the centroid to each
atom in the structure. The lengths of these vectors are
given in eq A1, and the law of cosines can be applied to
the angle θij between any pair of vectors p0i, p0j:

The reader should recognize the left-hand side of eq A2
as being the scalar or dot product p0i ‚ p0j. In anticipa-
tion of future use, we make the following definition:

We are now in a position to formally derive the method
used to obtain the initial 1D estimate from distance
information alone. This derivation differs somewhat
from those given in the distance geometry literature,26,27

as it does not assume at the outset that the eigenvectors
of G will provide the initial coordinates. Rather, we
show how G naturally arises in the solution of an
optimization problem aimed specifically at identifying
the primary axis. The objective, then, is to find a unit
vector v which originates at the centroid of the molecule
and runs along the primary axis we seek. If v is in fact
the primary axis, then the scalar projections {p01 ‚ v,
..., p0n ‚ v} will be the initial 1D coordinates and they

Table 6. Summary of Results from Classification Studies

number of correct classifications

class
no. of

ligands 3D f 1D 2D f 1D
Daylight
2D FPs

Cerius2

pharm.
FPs

ACE inhibitors 30 30 29 29 30
R adrenergics 23 13 17 11 14
â adrenergics 66 60 59 58 53
dopaminergics 39 31 31 21 29
H2 antihistamines 24 21 22 21 21
serotonergics 37 20 17 9 12

totals 219 175 175 149 159

similarity radius 0.444 0.461 0.544 0.111
prediction quality 0.781 0.795 0.663 0.726

d0i
2 )

1

n
∑
µ)1

n

diµ
2 -

1

n2
∑

ν>µ)1

n

dµν
2 (A1)

d0id0jcos(θij) ) 1
2
(d0i

2 + d0j
2 - dij

2) (A2)

p0i ‚ p0j ) 1
2
(d0i

2 + d0j
2 - dij

2) ≡ Gij (A3)
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should exhibit a maximum sum-of-squares SS(v):

With no explicit Cartesian coordinate system, the only
means we have of defining v is in terms of the vectors
{p01, ..., p0n}, and thus we write

where the unknown scalars {v1, ..., vn} are to be
determined. These scalars should be chosen according
to eq A4, with the restriction that v have unit length:

This is a constrained optimization problem that may be
solved by employing Lagrange’s method of undeter-
mined multipliers.45 Accordingly, a function L is con-
structed which contains both the sum-of-squared pro-
jections SS(v) and a second term that incorporates the
constraint:

The value of the Lagrange multiplier λ is left unspecified
until the correct family of solutions v is determined.

Proceeding with standard techniques of constrained
optimization, the partial derivatives of L with respect
to (v1, ..., vn) are set to zero, treating the Lagrange
multiplier λ as a constant:

We note that

and

Expanding eq A8 in terms of eqs A9 and A10, we obtain
for k ) 1, ..., n

From eq A3 it is evident that Gik ) Gki, so eq A11 may
be rewritten in the following matrix-vector form:

By making the substitution y ) Gv, a standard eigen-
problem is obtained:

Any of the n eigenvectors of G will afford an extremum
in L, but, as we will show later, the eigenvector with
the largest eigenvalue will ultimately yield the greatest
value for SS(v). We label this solution (y〈1〉, λ〈1〉) and note
that the dominance of λ〈1〉 allows the use of a simple
power iteration46 for determining just this dominant
eigenvector-eigenvalue pair, thus avoiding a costly n
× n matrix diagonalization. The vector obtained will not
automatically have the correct lengthsthis will be
inferred shortly from the constraint on the length of v.

The corresponding solution to eq A12 is obtained by
back-substitution:

It is trivial to show that v〈1〉 ) y〈1〉/λ〈1〉 is a solution to eq
A14:

The constraint on the length of v〈1〉 may now be enforced
to arrive at the correct length for y〈1〉:

Hence, we have the following requirement:

This result may be combined with eq A9 to show that
the eigenvector with the largest associated eigenvalue
does in fact yield the maximum sum-of-squared projec-
tions:

Finally, we show that the initial 1D coordinates we seek
are simply the entries of y〈1〉:
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